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The systematic use of symmetry arguments, with inclusion of magnetic

symmetry, is scarce in the investigation of magnetic materials. This is an

unfortunate situation particularly when multiferroics are being studied. The lack

of a consistent complete symmetry framework often prevents the distinction of

what is the signature of a specific atomic mechanism and what is symmetry-

forced and therefore common to any possible underlying microscopic model.

Here the recently reported magnetoelectric properties of Ba2CoGe2O7

[Murakawa et al. (2010). Phys. Rev. Lett. 105, 137202] are discussed as an

extreme example of this situation, and it is shown how three of the four

magnetoelectric responses that have been reported for this compound can be

predicted by symmetry considerations without appealing to any specific atomic

mechanism.

1. Introduction

Tensor properties of any crystal are constrained by the point-

group symmetry of the crystal. The point group to be

considered for magnetic properties is the magnetic point

group (Shubnikov point group). When characterizing the

physical properties of a non-magnetic crystal, the necessity of

knowing its point group is taken for granted. In contrast, it is

surprising how much research on multiferroics, and magne-

toelectrics in general, is being carried out without caring about

the actual magnetic point group of the system. Symmetry

considerations, if existing, are marginal or are reduced to the

symmetry of the atomic positional structure, which may often

be inconsistent with the actual magnetic symmetry of the

reported magnetic structure. This situation is caused by the

usual practice when determining magnetic structures. The

successful application of the so-called representation analysis

(Bertaut, 1968) in the determination of magnetic structures

has implied that magnetic symmetry is not essential for the

characterization of most magnetic structures. Magnetic struc-

tures are usually described by a nuclear positional structure

with symmetry given by a normal space group, plus a set of

static waves of atomic magnetic moments with symmetries

described by irreducible representations of this space group.

This has the advantage that it can be used even in the cases

that the waves are incommensurate, where conventional

magnetic space-group symmetry cannot be defined. But it has

the disadvantage that one ignores in general the underlying

magnetic symmetry of the investigated phase, and as a

consequence loses the perspective and control of what is

symmetry-allowed in this phase, both concerning the possible

configuration of the magnetic moments, the induced nuclear

structural distortions and the macroscopic properties. As long

as the coupling between lattice and magnetic moments is so

small that it can be neglected, the lack of magnetic symmetry

considerations is not much of a problem. But these latter

become essential in materials like multiferroics, magneto-

electrics, magnetoelastics etc., where precisely this coupling is

a fundamental issue. In these cases a rigorous use of magnetic

symmetry is a fundamental tool for achieving a consistent

framework to describe and explain their properties (Schmid,

2008).

The lack of symmetry considerations often prevents a clear

distinction between what can be the signature of a specific

microscopic mechanism and a symmetry-forced property that

must necessarily be fulfilled by any symmetry-consistent

microscopic model. The recent study reported by Murakawa et

al. (2010) is an extreme example of this problem. This article

reports various peculiar magnetoelectric properties of the

multiferroic Ba2CoGe2O7 and the authors explained their

observations using a so-called spin-dependent hybridization

model. These successful explanations were then presented as a

validation of the proposed microscopic model. We reconsider

here these magnetoelectric properties as a representative case

that demonstrates the benefits of an extensive and systematic

use of magnetic symmetry considerations in the investigation

of multiferroics. We will show that three of the four magne-

toelectric features reported by Murakawa et al. (2010) can be
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predicted by using simple arguments based on the symmetry

of the material, and therefore these properties should not be

claimed as the signature of any specific atomic mechanism.

2. Magnetoelectric response of Ba2CoGe2O7 explained
from its magnetic symmetry

2.1. Magnetic field in the plane xy

The space group of Ba2CoGe2O7 in the paramagnetic phase

is P421m, and the system becomes a collinear antiferromagnet

(AFM) at low temperatures with the two Co atoms in its unit

cell having opposite spins in the xy plane (Zheludev et al.,

2003). Murakawa et al. (2010) report, and present as proof of

the microscopic model they propose, the variation of a spon-

taneous polarization along the z axis (Pz) for magnetic fields

rotating in the xy plane. The magnitude of this polarization

depends on the angle between the magnetic field and the x axis

(�H), according to the approximate law Pz / sin 2�H (see

Fig. 1). In fact this magnetoelectric response can be predicted

by using only the symmetry properties of the magnetic phase

as follows. The AFM magnetic ordering in this material breaks

the paramagnetic space group P421m10 into different magnetic

space groups depending on the orientation of the spins, being

P2012120 and Cm0m20 for the AFM spin configurations along the

directions [100] and [110], respectively. For the symmetry-

related orientations [010] and [�110], the equivalent P2120120

and Cmm020 are realized, while for a more general direction

on the plane the symmetry reduces to P1120 (Litvin, 2008).

The magnetic point groups associated with these symmetries

(20220, 22020, m0m20, mm020 and 20, respectively) allow a weak

secondary induced ferromagnetic (FM) component (Mx, My)

in the xy plane (Aizu, 1970). If a magnitude is allowed by the

symmetry of a thermodynamic phase, according to the Von

Neumann principle, it will be present in whatever small

quantity, and its presence can be explained as an induced

effect through coupling with the symmetry-breaking order

parameter. Indeed, if we denote by (Lx, Ly) the amplitudes of

the AFM configuration, i.e. the order parameter, one can see

that LxMy–LyMx is invariant for the operations of P421m10

and is therefore the lowest-order symmetry-allowed coupling

between these degrees of freedom. This is the consequence of

the fact that (Mx, My) and (Ly, �Lx) have the same transfor-

mation properties for the operations of P421m10, i.e. they

transform according to the same irreducible representation of

P421m10 (Stokes et al., 2007). The symmetry-allowed coupling

term LxMy–LyMx in the energy implies that the energy mini-

mization will introduce an FM component (Mx, My) propor-

tional to (Ly, �Lx). In other words, the magnetic symmetry of

the structure allows a spin canting through a weak induced FM

component perpendicular to the direction of the primary

AFM ordering. A magnetic field in the plane xy is then

expected to align this weak spontaneous FM component along

the field direction and, as a consequence, the dominant AFM

component will be perpendicular to the field direction. Thus,

the orientation of the AFM configuration will correlate with

the magnetic field angle �H in the form (with the sign of L0

unknown)

ðLx;LyÞ ¼ L0 sin �H;� cos �Hð Þ: ð1Þ

The magnetic point-group symmetry of the system is therefore

changing as a function of the field angle �H among the

different magnetic space groups mentioned above, as indi-

cated in Fig. 1. Non-polar magnetic point groups 22020 and

20220 are realized for �H = 0 (mod �) and �H = �/2 (mod �),

respectively. For these orientations, no spontaneous electrical

polarization is expected, in agreement with the experiment,

but for any other direction the magnetic point groups are

polar along z. One can therefore predict that a spontaneous

electrical polarization in this direction will occur as a

secondary or induced effect of the magnetic ordering. Simi-

larly to that carried out for the FM component, we can obtain

the approximate behaviour of this spontaneous polarization

Pz by considering the symmetry-allowed coupling term of

lowest order between this magnitude and the order parameter

[Lx, Ly]. This is the P421m10-invariant term: PzLxLy. This

coupling term in the energy implies that the energy mini-

mization requires a spontaneous polarization Pz proportional

to LxLy. Considering the �H dependence of the Lx and Ly

amplitudes [equation (1)], Pz should then vary as Pz =

Pz0 sin2�H, as observed (see Fig. 1). It should be stressed that

the dependence of Pz on the magnetic field direction is

established because the field controls the orientation of the

order parameter and Pz depends on this orientation. However,

the magnitude of this polarization depends only on the

amplitude of the spontaneous AFM order parameter and not

on the intensity of the magnetic field. In fact, for zero magnetic

field a non-zero Pz is expected, as the easy axis for the AFM

ordering seems to be the [110] direction (Zheludev et al.,

2003). The system is therefore an improper ferroelectric with
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Figure 1
Scheme of the spontaneous polarization Pz in Ba2CoGe2O7 as a function
of the orientation of a magnetic field in the xy plane, with �H being its
angle with the x axis. The different magnetic symmetries realized
depending on this orientation are indicated. The nodes of the sinusoidal
response correspond to non-polar magnetic space groups. Pz has, in
general, two contributions: a spontaneous component induced by the
primary AFM ordering plus an induced component owing to the linear
magnetoelectric response (see text).



spontaneous polarization along z. The switch of this polar-

ization can be achieved through a rotation of the magnetic

field by 90�. Reversely, a switch of the polarization along z by

means of an electric field will produce a 90� rotation of both

the AFM and the weak FM components in any of the two

possible senses.

Apart from the spontaneous polarization Pz discussed

above, one should expect an additional contribution to the

polarization along z, i.e. P H
z , proportional to the applied

magnetic field and caused by the linear magnetoelectric effect,

which is symmetry-allowed in the ordered AFM phase.

Indeed, for a general orientation of the magnetic field in the

plane xy, the actual magnetic symmetry of the system, as

discussed above, is P1120 (magnetic point group 20, unique axis

z). This implies a linear magnetoelectric tensor with non-zero

coefficients �31, �32 (and �13, �23) responsible for a polariza-

tion along z related to the magnetic field in the xy plane

(Rivera, 2009). At the special direction �H = 0 (mod �) the

coefficient �31 must be zero, as it is forbidden for the higher

point-group symmetry corresponding to this orientation. For

similar reasons, �32 should vanish for �H = �/2 (mod �). This

implies that the additional contribution to the polarization

along z that could originate in the linear magnetoelectric

response is zero for these field orientations. Hence, the nodes

of the function Pz(�H) are maintained when the linear

magnetoelectric effect is included. Furthermore, one can

demonstrate that the functional dependence Pz / sin 2�H is

robust when these effects are included in a first-order

approximation. Indeed, from the transformation properties

of the relevant magnitudes under the symmetry operations of

the paramagnetic space group P421m10, one can easily

conclude that the lowest-degree coupling terms responsible

for the linear magnetoelectric response are of the form

(MyLy–MxLx)Pz and (PyLy–PxLx)Mz. At the AFM phase

these terms in the energy imply that

�31 ¼ cLx; �32 ¼ �cLy;

�13 ¼ c0Lx; �23 ¼ �c0Ly;
ð2Þ

where c and c0 are unknown constants. Therefore, by inserting

in (2) the angle dependence of the amplitudes of the AFM

order parameter given by (1), one obtains

P H
z ¼ �31H0 cos �H þ �32H0 sin �H / sin 2�H : ð3Þ

That is, the characteristic �-periodic sinusoidal variation of the

electrical polarization along z is maintained when linear

magnetoelectric effects are included. The above prediction of

this phenomenon is based only on symmetry considerations

and symmetry-based phenomenology. This implies that this

magnetoelectric property cannot be taken as the signature of

any specific microscopic model. Note that the magnetic field

orientation considered in this first set of experiments does not

cause any additional symmetry break; we have worked only

with possible symmetries of the spontaneous magnetic

ordering which, being dependent on the orientation of the

AFM order parameter, can be controlled by the magnetic

field. This is no longer true for the geometry of the experi-

mental result discussed next.

2.2. Magnetic field in the plane yz

A second type of magnetoelectric behaviour of

Ba2CoGe2O7 was reported by Murakawa et al. (2010) for a

magnetic field rotating in the plane yz. A ferroelectric polar-

ization along the x axis (Px) was observed. Its magnitude

depends on the field angle with respect to the z axis (�H)

following a law that can be approximated as Px = Px0 cos �H if

�� < �H < 0 or Px = �Px0 cos �H if 0 < �H < � (see Fig. 2).

The polarization Px has therefore a strong discontinuity as the

field crosses the z axis. Again this behaviour was explained by

Murakawa et al. (2010) making use of the proposed micro-

scopic mechanism and this explanation was presented as

additional support for the model. But, as in the previous case,

the observed behaviour of Px can be predicted from pure

symmetry arguments, as shown in the following. The y

component of the field drives the in-plane weak FM magne-

tization along [010] and the AFM component into the

configuration (L0, 0) with magnetic space group P2012120. The

additional field-induced magnetization along z, i.e. Mz, further

reduces the symmetry to P20111, with a polar magnetic point

group 20 (unique axis x) that allows a polarization along the x

axis, Px. This polarization should vary in the first approxima-

tion as Px / LxMz because the lowest symmetry-allowed

coupling is (PyLy–PxLx)Mz. The modulus of Lx is expected to

be essentially independent of the field direction in the plane yz

but its sign must differ for field orientations with �H smaller or

larger than 0, since at this threshold value the field component

Hy switches sign, forcing the FM magnetization My and also

the AFM amplitude Lx to switch their signs. Therefore, as long

as the magnetization Mz responds linearly to the z component

of the magnetic field component Hz = H0 cos�H, one should
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Figure 2
Scheme of the spontaneous polarization Px in Ba2CoGe2O7 as a function
of the orientation of a magnetic field in the yz plane, with �H being its
angle with the z axis. The nodes of the sinusoidal polarization at �H = �/2
and 3�/2 correspond to non-polar configurations. Px is a linear
magnetoelectric response to the z component of the magnetic field.
The discontinuities at �H = 0 and � reflect the change of sign of the
corresponding magnetoelectric coefficient through the switch of the
spontaneous magnetic ordering, (L0, 0), (0,�M0), by the change of sign of
the magnetic field y component.



expect that Px = Px0 cos �H , with the mentioned change of sign

caused by the switch of the sign of Lx, as illustrated in Fig. 2

and observed experimentally.

This second type of magnetoelectric response can alter-

natively be explained considering the linear magnetoelectric

effect discussed above. In fact, the peculiar dependence of Px

is just the signature of the fact that the phase point-group

symmetry 20220 only allows �13 (and �31) as non-zero linear

magnetoelectric coefficients. Therefore, the application of a

magnetic field in the plane yz should induce a polarization

along x, according to the law

P H
x ¼ �13Hz / LxH0 cos �H; ð4Þ

where we have used equation (2). The magnetoelectric coef-

ficient �13 is caused by the magnetic ordering and switches sign

whenever the AFM order parameter is switched, causing the

discontinuity at �H = 0 and �.

It should be stressed that the sinusoidal response of the

induced polarization observed in this case, in contrast with the

previous one, is not intrinsic. It just reflects the sinusoidal

variation of the magnetic field component that is magneto-

electrically active. We are simply observing a conventional

linear magnetoelectric response to a sinusoidal magnetic field

component Hz, as expected from the magnetic symmetry of

the system, superposed with one additional effect: the relevant

magnetoelectric tensor coefficient changes sign when the spin

pattern is switched by the reversal of Hy, which is a component

of the magnetic field not directly active in the linear magne-

toelectric response. Notice also that the polarization Px

disappears if the magnetic field is set to zero; this is a quite

different situation to the spontaneous polarization Pz

discussed above, which has a spontaneous part induced by the

magnetic ordering, and not by the magnetic field.

As the magnetoelectric coefficient �31 is also non-zero in a

phase with point-group symmetry 20220, it is interesting to

consider its possible detection, as carried out in the previous

experiment for �13. In principle, a magnetic field along x

should induce an electric polarization along z. However, we

have seen in the first set of experiments that a magnetic field

on the plane xy is bound to change the orientation of the

order parameter so that the field direction is along the

weak FM component. This implies that the geometry neces-

sary to observe the �31 magnetoelectric response in the

P2012120 configuration, with the weak FM component perpen-

dicular to the applied magnetic field, cannot be achieved in

practice.

2.3. Magnetic-field-induced ferroelectricity

Murakawa et al. (2010) report a third type of experiment,

showing a so-called ‘electrical control’ of the magnetization

direction. Keeping a fixed magnetic field along the z axis, a

hysteresis loop of the polarization Px as a function of an

electric field applied along x is observed, and the switch of the

polarization Px, through the reversal of the electric field, is

seen to be accompanied by a switch of the weak ferromagnetic

magnetization along [010], so that the total magnetization

reverses its tilt in the yz plane with respect to the z direction.

As with the previous experiments, this behaviour can be

explained by considering the symmetry-forced linear magne-

toelectric properties of the compound and its multistability.

According to the considerations above [equation (4)], the

polarization along x induced by a magnetic field along z is

given by Px/ LxHz. Keeping Hz fixed, an electric field applied

along x will therefore tend to orient the AFM spin config-

uration so that Lx is maximal, i.e. the order parameter will

orient as (L0, 0), and the symmetry of the system becomes

P20111, as in the second type of experiments. We have seen

above that in this case two degenerate equilibrium states with

opposite values for the polarization P H
x exist, depending

on the sign of Lx. In other words, the fixed magnetic field,

together with the multistability of the magnetic ordered

configurations, produce a kind of magnetic-field-induced

ferroelectric system. A sinusoidal electric field along x is

bound to switch the polarization P H
x between the two energy-

equivalent states, producing a hysteresis loop with a remnant

polarization proportional to the applied magnetic field Hz.

Given the proportionality with LxHz of this remnant polar-

ization, it is obvious that its switch in the hysteresis loop must

be accompanied by the switch of the order parameter Lx, and

as a consequence of the associated weak FM component My,

resulting in the magnetization tilt discussed by Murakawa et al.

(2010).

3. Conclusions

The above considerations demonstrate that the results of three

of the four types of magnetoelectric measurements reported

by Murakawa et al. (2010) for Ba2CoGe2O7 can be explained

solely by the magnetic symmetry and the symmetry-forced

multistability of this material. The remarkable and complex

response of the material to magnetic and electric fields can be

predicted by considering the possible ferroic species (Aizu,

1970; Schmid, 2008) of the magnetic ordered phase, i.e. the

magnetic point-group symmetries of both the paramagnetic

and the AFM phase. Therefore these magnetoelectric prop-

erties cannot be seen as signatures of specific atomic

mechanisms. Of course, the magnitude (and sign) of the

predicted behaviour cannot be given by symmetry arguments,

and it is in this field where the quantitative predictions of

different possible atomic mechanisms should be tested. But

the geometrical atomic mechanism proposed by Murakawa et

al. (2010) does not provide a quantitative prediction for the

magnitudes of the magnetoelectric effects, as it includes

adjustable parameters that are adapted to the observed

magnitude of the effects. Consequently, the fit of the model

predictions to the experimental results, in view of the above

considerations, can only be considered a demonstration of the

model being symmetry-consistent.

In the fourth type of experiments, Murakawa et al. (2010)

reported the dependence of Pz on the magnitude of the

magnetic field applied along [110] (see Fig. 3 of this reference).

This dependence is strongly non-linear with a change of sign

occurring at high fields. This behaviour can be accounted for
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by the proposed model, while it is beyond a direct prediction

from symmetry arguments. Hence, it is only this fourth type of

behaviour that can indeed be considered a support for the

proposed geometric microscopic model. Therefore, in this

article, we are not refuting the possible validity of the specific

atomic model proposed by Murakawa et al. (2010) (against

which we have no fundamental objection), but we are calling

attention to the fact that, when looking for specific atomic

mechanisms in a given compound, one should take care to

clearly distinguish what is symmetry-forced (and therefore

model-independent) and what is a signature of a specific

microscopic mechanism. The paper by Murakawa et al. (2010)

is just one example of a common type of problem in the field

of multiferroics, where the predictive power of symmetry

arguments is very often disregarded. Using it as a repre-

sentative case, we have underlined how a proper and

systematic use of symmetry arguments may permit the main

features of the magnetoelectric behaviour of a given system to

be predicted and understood, without appealing to any

particular atomic mechanism. This provides new arguments

and examples to a general discussion on this matter that

underlies the present research on multiferroics (see, for

instance, Kenzelmann & Harris, 2008).

The system discussed here has a commensurate magnetic

structure and its possible magnetic symmetries are therefore

described by Shubnikov magnetic space groups. As many

multiferroics have incommensurate magnetic ordering, their

lack of lattice periodicity precludes the use of these groups.

However, the symmetry of incommensurate magnetic phases

can be described by means of generalized symmetry groups,

which can be defined applying the same superspace formalism

as in non-magnetic incommensurate structures (Janner &

Janssen, 1980; Petřı́ček et al., 2010). The rotational operations

of these magnetic superspace groups constitute the point

groups defining the macroscopic symmetry of these systems.

As a consequence, fully consistent systematic analyses of the

crystal tensor properties of incommensurate multiferroics can

also be carried out using this generalized symmetry.

After completion of this work, we have become acquainted

with a preprint of Toledano et al. (2010), where a symmetry

analysis of this magnetic phase is presented. This article is,

however, focused on spontaneous toroidic effects and

considers them a major agent in the magnetoelectric beha-

viour of the system. We think, however, that at least the three

magnetoelectric properties discussed here can be simply

explained, as shown above, without introducing the concept of

a spontaneous toroidal moment.
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